数学如何学好,如果学好数学( 二 )


理解的标准是“准确”、“简单”和“全面” 。 “准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木, 又见森林”, 不重不漏 。 对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法 。
★什么是记忆?
一般地说, 记忆是个体对其经验的识记、保持和再现, 是信息的输入、编码、储存和提取 。 借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法, 比如, 看到“抛物线”三个字, 你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容, 再去查找、对照, 这样印象就会更加深刻 。 另外, 在数学学习中, 要把记忆和推理紧密结合起来, 比如在三角函数一章中, 所有的公式都是以三角函数定义和加法定理为基础的, 如果能在记忆公式的同时, 掌握推导公式的方法, 就能有效地防止遗忘 。
总之, 分阶段地整理数学基础知识, 并能在理解的基础上进行记忆, 可以极大地促进数学的学习 。

三、数学解题
学数学没有捷径可走, 保证做题的数量和质量是学好数学的必由之路 。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册 。
② 做完一节的全部练习后, 对照答案进行批改 。 千万别做一道对一道的答案, 因为这样会造成思维中断和对答案的依赖心理;先易后难, 遇到不会的题一定要先跳过去, 以平稳的速度过一遍所有题目, 先彻底解决会做的题;不会的题过多时, 千万别急躁、泄气, 其实你认为困难的题, 对其他人来讲也是如此, 只不过需要点时间和耐心;对于例题, 有两种处理方式:“先做后看”与“先看后测” 。
③选择有思考价值的题, 与同学、老师交流, 并把心得记在自习本上 。
④每天保证1小时左右的练习时间 。
2、如何保证质量?
①题不在多, 而在于精, 学会“解剖麻雀” 。 充分理解题意, 注意对整个问题的转译, 深化对题中某个条件的认识;看看与哪些数学基础知识相联系, 有没有出现一些新的功能或用途?再现思维活动经过, 分析想法的产生及错因的由来, 要求用口语化的语言真实地叙述自己的做题经过和感想, 想到什么就写什么, 以便挖掘出一般的数学思想方法和数学思维方法;一题多解, 一题多变, 多元归一 。
②落实:不仅要落实思维过程, 而且要落实解答过程 。
③复习:“温故而知新”, 把一些比较“经典”的题重做几遍, 把做错的题当作一面“镜子”进行自我反思, 也是一种高效率的、针对性较强的学习方法 。

四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求 。 比如, 数学思维方法都不是单独存在的, 都有其对立面, 并且两者能够在解决问题的过程中相互转换、相互补充, 如直觉与逻辑, 发散与定向、宏观与微观、顺向与逆向等等, 如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法, 或许就会有“山重水复疑无路, 柳暗花明又一村”的感觉 。 比如, 在一些数列问题中, 求通项公式和前n项和公式的方法, 除了演绎推理外, 还可用归纳推理 。 应该说, 领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维, 是提高学生数学素养、培养学生数学能力的重要方法 。
总而言之, 只要我们重视运算能力的培养, 扎扎实实地掌握数学基础知识, 学会聪明地做题, 并且能够站到哲学的高度去反思自己的数学思维活动, 我们就一定能早日进入数学学习的自由王国 。

推荐阅读