如何解一元二次方程,k个k相加的n次方等于什么( 五 )


(3)化成一般形式后利用公式法解 。
(4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解 。
(1)解:4(x+2)^2-9(x-3)^2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x^2+2x-3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x^2-2 x=-
x^2-2 x+ =0 (先化成一般形式)
△=(-2 )^2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x^2-4mx-10x+m^2+5m+6=0
4x^2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根 。 (选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解 。
例7.用配方法解关于x的一元二次方程x^2+px+q=0
解:x^2+px+q=0可变形为
x^2+px=-q (常数项移到方程右边)
x^2+px+( )2=-q+( )2 (方程两边都加上一次项系数一半的平方)
(x+)2= (配方)
当p^2-4q≥0时,≥0(必须对p^2-4q进行分类讨论)
∴x=- ±=
∴x1= ,x2=
当p^2-4q<0时,<0此时原方程无实根 。
说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母取值的要求,必要时进行分类讨论 。
如何巧解一元二次方程 一元二次方程的解法四种:
1.直接开平方法:⑴形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方法求根;⑵如果方程能化成x2=p的形式,那么可得x=±√p;⑶如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根;⑷注意:等号左边是一个数的平方形式而右边是一个常数;
2.配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求根.用配方法解一元二次方程的步骤 ⑴把原方程化为一般形式ax2+bx+c=0(a≠0);⑵方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;⑶方程两边同时加上一次项系数一半的平方;⑷把左边配成一个完全平方式,右边化为一个常数;⑸如果右边是非负数,则方程有两个实数根,用直接开平方法求解;如果右边是一个负数,则方程无实数根;
3.因式分解法一般步骤:⑴移项,使方程右边为零;⑵将方程的左边转化为两个一元一次多项式的积;⑶令每个因式分别为零;⑷解两个一元一次方程;
举例:x2-5x+6=0因式分解,得(x-2)(x-3)=0即x-2=0或x-3=0∴x1=2,x2=3;
4.公式法求根公式:求根公式
求根公式
【如何解一元二次方程,k个k相加的n次方等于什么】5.说明:一元二次方程有两个实数根或者没有实数根,绝对不存在一个实数根;如果方程有实数根,配方法和公式法都能解;直接开平方法要求方程必须是左平方右常数形式;因式分解法要求左边必须能分解因式为A?B=0即两个因式相乘为0,因式分解法的理论依据为:“如果两个因式的乘积为零,那么至少有一个因式为零” 。

推荐阅读