如何解一元二次方程,k个k相加的n次方等于什么( 四 )


将二次项系数化为1:x^2+(b/a)x=-c/a
方程两边分别加上一次项系数的一半的平方:x^2+(b/a)x+0.5(b/a)^2=-c/a+0.5(b/a)^2
方程左边成为一个完全平方式:[x+0.5(b/a)]^2=-c/a+0.5(b/a)^2
当b2-4ac≥0时,x+ =± √[-c/a+0.5(b/a)^2 ]-0.5(b/a)
∴x=...(这就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x^2-x=
方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2
配方:(x-)^2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根 。
当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)
当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
当b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个共轭的虚数根)(初中理解为无实数根)
例3.用公式法解方程 2x^2-8x=-5
解:将方程化为一般形式:2x^2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根 。 这种解一元二次方程的方法叫做因式分解法 。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
(3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x^2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解 。
(2)解:2x^2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解 。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解 。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解 。
(4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解 。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数 。
直接开平方法是最基本的方法 。
公式法和配方法是最重要的方法 。 公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解 。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程 。 但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好 。 (三种重要的数学方法:换元法,配方法,待定系数法) 。
例5.用适当的方法解下列方程 。 (选学)
(1)4(x+2)^2-9(x-3)^2=0 (2)x^2+2x-3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算 。 观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积 。
(2)可用十字相乘法将方程左边因式分解 。

推荐阅读