科学探索|研究:阴极化学的突破为更可持续的锂硫电池铺平道路
德雷塞尔大学的研究人员已开发出稳定的硫磺阴极,在商用锂离子电池使用的碳酸盐电解质中可运行数千次,为更可持续的电池替代品铺平道路 。
文章图片
美国对电动汽车(EVs)不断增长的需求揭示了可持续采购电池技术的重大挑战,这种技术是向可再生电力和远离化石燃料的广泛转变所必需的 。为了使电池不仅比目前用于电动车的电池性能更好,而且还能用现成的材料制成,德雷塞尔大学的一组化学工程师已经找到了将硫磺引入锂离子电池的方法--结果令人震惊 。
随着2021年全球电动车销量翻番,锂、镍、锰和钴等电池材料的价格飙升,这些原材料的供应链(大部分来自其他国家)也因大流行而陷入瓶颈 。这也将注意力集中在原材料的主要提供者:刚果等国家;并提出了从地球上提取这些原材料对人类和环境影响的问题 。
早在电动车激增和电池材料短缺之前,开发商业上可行的硫磺电池一直是电池行业的可持续、高性能的目标 。这是因为硫磺的天然丰度和化学结构将使其能够储存更多的能量 。德雷塞尔大学工程学院的研究人员最近在《通信化学》杂志上发表的一项突破,提供了一种避开过去压制锂硫电池的障碍的方法,最终将这项备受追捧的技术拉到了商业化的范围内 。
他们的发现是一种生产和稳定罕见形式的硫的新方法,这种硫在碳酸盐电解质中发挥作用--商业锂离子电池中使用的能量传输液体 。这一发展不仅会使硫磺电池在商业上可行,而且它们的容量将是锂离子电池的三倍,并可持续充电4000次以上--相当于使用10年,这也是一个实质性的改进 。
领导这项研究的德雷塞尔大学化学和生物工程系乔治-B-弗朗西斯讲座教授Vibha Kalra博士说:“多年来,硫在电池中的应用一直非常理想,因为它是地球上丰富的资源,可以以安全和环保的方式收集,而且正如我们现在所证明的,它也有可能以商业上可行的方式改善电动汽车和移动设备的电池性能 。”
文章图片
将硫磺引入商业上友好的碳酸盐电解质的锂电池的挑战是中间硫磺产品(称为多硫化物)和碳酸盐电解质之间发生不可逆的化学反应 。由于这种不良反应,以前尝试在碳酸盐电解质溶液的电池中使用硫磺阴极的结果是几乎立即关闭,并且在仅仅一个循环之后就完全失效 。
锂硫(Li-S)电池已经在使用乙醚电解质--而不是碳酸盐--的实验环境中表现出卓越的性能,因为乙醚不会与多硫化物发生反应 。但是这些电池在商业上是不可行的,因为乙醚电解质是高度挥发性的,其成分的沸点低至42摄氏度,这意味着任何高于室温的电池升温都可能导致故障或熔化 。
Kalra说:“在过去十年中,大多数锂硫领域采用了醚类电解质以避免与碳酸盐发生不良反应 。然后多年来,研究人员通过缓解所谓的多硫化物穿梭/扩散,深入研究如何提高醚基硫磺电池的性能--但该领域完全忽略了一个事实,即醚电解质本身就是一个问题 。在我们的工作中,主要目标是用碳酸盐取代乙醚,但在这样做的时候,我们也消除了多硫化物,这也意味着没有穿梭,所以电池可以在数千次循环中表现得特别好 。”
Kalra团队以前的研究也是以这种方式处理问题的--生产一种碳纳米纤维阴极,通过遏制中间多硫化物的移动来减缓基于醚的锂硫电池中的穿梭效应 。但是为了改善阴极的商业途径,该小组意识到它需要使它们与商业上可行的电解质一起发挥作用 。
- IT|研究发现大脑炎症与睡眠障碍和阿尔茨海默病有关
- 科学探索|科学家研发毫米级机器人 可实现人体内靶向给药
- IT|研究:“自我加强型疫苗”可将多种药物剂量装入一针中
- 科学探索|野生蝙蝠被发现可在4年后识别跟食物奖励相关的铃声
- 科学探索|盘点大自然6种能使身体部位再生的动物
- 科学探索|中国空间站的光学舱:巡天空间望远镜预计2024年投入科学运行
- 科学探索|科学家发现了本质上不会衰老的物种
- 科学探索|问天实验舱器箭组合体今天进行垂直转运
- 科学探索|新研究揭示了大象是如何避免癌症的
- 科学探索|一种新开发的抗生素被发现可以杀死耐药性细菌