素数包括那些数 素数是这样的整数 , 它除了能表示为它自己和1的乘积以外 , 不能表示为任何其它两个整数的乘积 。 例如 , 15=3*5 , 所以15不是素数;又如 , 12=6*2=4*3 , 所以12也不是素数 。 另一方面 , 13除了等于13*1以外 , 不能表示为其它任何两个整数的乘积 , 所以13是一个素数 。
有的数 , 如果单凭印象去捉摸 , 是无法确定它到底是不是素数的 。 有些数则可以马上说出它不是素数 。 一个数 , 不管它有多大 , 只要它的个位数是2、4、5、6、8或0 , 就不可能是素数 。 此外 , 一个数的各位数字之和要是可以被3整除的话 , 它也不可能是素数 。 但如果它的个位数是1、3、7或9 , 而且它的各位数字之和不能被3整除 , 那么 , 它就可能是素数(但也可能不是素数) 。 没有任何现成的公式可以告诉你一个数到底是不是素数 。 你只能试试看能不能将这个数表示为两个比它小的数的乘积 。
找素数的一种方法是从2开始用“是则留下 , 不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止 , 比方说 , 一直列到10 , 000) 。
第一个数是2 , 它是一个素数 , 所以应当把它留下来 , 然后继续往下数 , 每隔一个数删去一个数 , 这样就能把所有能被2整除、因而不是素数的数都去掉 。 在留
下的最小的数当中 , 排在2后面的是3 , 这是第二个素数 , 因此应该把它留下 , 然后从它开始往后数 , 每隔两个数删去一个 , 这样就能把所有能被3整除的数全
都去掉 。 下一个未去掉的数是5 , 然后往后每隔4个数删去一个 , 以除去所有能被5整除的数 。 再下一个数是7 , 往后每隔6个数删去一个;再下一个数是11
, 往后每隔10个数删一个;再下一个是13 , 往后每隔12个数删一个 。 ……就这样依法做下去 。
你也许会认为 , 照这样删下去 , 随着删去的数越来越多 , 最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面 , 再也不
会有素数了 。 但是实际上 , 这样的情况是不会出现的 。 不管你取的数是多大 , 百万也好 , 万万也好 , 总还会有没有被删去的、比它大的素数 。
事实上 , 早在公元前300年 , 希腊数学家欧几里得就已证明过 , 不论你取的数是多大 , 肯定还会有比它大的素数 , 假设你取出前6个素数 , 并把它们乘在
一起:2*3*5*7*11*13=30030 , 然后再加上1 , 得30031 。 这个数不能被2、3、5、7、11、13整除 , 因为除的结果 , 每次都会余1 。 如果30031除了自己以外不能被任何数整除 , 它就是素数 。 如果能被其它数整除 , 那么30031所分解成的几个数 , 一定都大于13 。 事实上 , 3
0031=59*509 。
对于前一百个、前一亿个或前任意多个素数 , 都可以这样做 。 如果算出了它们的乘积后再加上1 , 那么 , 所得的数或者是一个素数 , 或者是比所列出的素数还要大的几个素数的乘积 。 不论所取的数有多大 , 总有比它大的素数 , 因此 , 素数的数目是无限的 。
随着数的增大 , 我们会一次又一次地遇到两个都是素数的相邻奇数对 , 如5 , 7;11 , 13;17 , 19;29 , 31;41 , 43;等等 。 就数学家所能及的数来说 , 它们总是能找到这样的素数对 。 这样的素数对到底是不是有无限
个呢?谁也不知道 。 数学家认为是无限的 , 但他们从来没能证明它 。 这就是数学家为什么对素数感兴趣的原因 。 素数为数学家提供了一些看起来很容易、但事实
却非常难以解决的问题 , 他们目前还没能对付这个挑战哩 。
这个问题到底有什么用处呢?它除了似乎可以增添一些趣味以外 , 什么用处也没有 。
推荐阅读
- 如何改变命运,人一生有7次改变命运的机会
- 元尊女主是谁,元尊周元最后的老婆有几个
- 生活知识|痘印怎么去除最有效,去除痘印可以吃些什么
- 【种子】购买水稻种子应注意哪些事项
- 【功效】小麦与浮小麦的功效有何不同
- 【方法】施用自机有机液肥防臭方法
- 有些感情过不去就放下,有些人忘不了就把他放在心里
- 跳绳是减肥锻炼的好运动 跳绳锻炼要注意哪些事项
- 跳绳有助于预防宫外孕 经常跳绳能刺激脑神经活力
- 跳绳瘦腿的三大方法 跳绳是最有效的有氧减肥运动