科学探索|科学家发现对原子内电子运动进行高精准性的创新计时方法
来自慕尼黑工业大学(TUM)激光和 X 射线物理学教授 Reinhard Kienberger 在今年前发起了一项活动,在美国斯坦福直线加速器中心(SLAC)进行了飞秒范围的重要测量 。现在,一个大型的国际研究小组已经开发出一种方法来绕过 XFELs 的这个问题,并通过测量氖气中的一个基本衰变过程来证明其有效性 。
文章图片
然而,在这些微不足道的时间尺度上,一方面是在样品中引发反应的 X 射线脉冲,另一方面是“观察”它的激光脉冲,要做到同步是非常困难的 。这个问题被称为时间抖动(timing jitter),它是目前在 XFELs 上进行时间分辨实验的主要障碍,其分辨率越来越短 。
许多生物系统以及一些非生物系统--在被来自 XFEL 的 X 射线脉冲激发时受到损害 。损害的原因之一是被称为俄歇衰变(Auger decay)的过程 。X 射线脉冲将光电子从样品中弹出,导致它们被外壳中的电子取代 。当这些外层电子松弛时,它们会释放出能量,随后会诱发另一个电子的发射,即所谓的俄歇电子(Auger electron) 。
辐射损伤是由强烈的 X 射线和持续发射的俄歇电子造成的,它可以迅速地使样品退化 。在研究不同分子的实验中,为这种衰变计时将有助于规避辐射损伤 。此外,俄歇衰变是研究物质的奇异、高度激发状态的一个关键参数,而这只能在XFELs 进行研究 。
为了绘制俄歇衰变图,科学家们使用了一种被称为自我参照的阿托秒条纹(attosecond streaking)的技术,该技术基于对数千张图像中的电子进行测绘,并根据数据的整体趋势推断出它们的发射时间 。
对于他们的方法的第一次应用,该团队使用了氖气,在那里的衰变时间在过去已经被推断出来 。在将光电子和俄歇电子暴露在一个外部的"条纹"激光脉冲中后,研究人员确定了它们在数以万计的单独测量中的最终动能 。
帮助制定实验设计的 Reinhard Kienberger 教授说:“至关重要的是,在每次测量中,俄歇电子与条纹激光脉冲的相互作用总是比最初位移的光电子稍晚,因为它们的发射时间较晚 。这个不变的因素构成了该技术的基础 。通过结合这么多单独的观察,该团队能够构建一个详细的物理过程图,从而确定光和俄歇发射之间的特征时间延迟” 。
【科学探索|科学家发现对原子内电子运动进行高精准性的创新计时方法】更多信息访问:Clocking the Movement of Electrons Inside an Atom – Down to a Millionth of a Billionth of a Second.
- 人物|两位诺奖得主 给“太上老君托梦”的天价白酒当首席科学家
- IT|研究发现大脑炎症与睡眠障碍和阿尔茨海默病有关
- 科学探索|科学家研发毫米级机器人 可实现人体内靶向给药
- 科学探索|野生蝙蝠被发现可在4年后识别跟食物奖励相关的铃声
- 科学探索|盘点大自然6种能使身体部位再生的动物
- 科学探索|中国空间站的光学舱:巡天空间望远镜预计2024年投入科学运行
- 科学探索|科学家发现了本质上不会衰老的物种
- 科学探索|问天实验舱器箭组合体今天进行垂直转运
- 科学探索|新研究揭示了大象是如何避免癌症的
- 科学探索|一种新开发的抗生素被发现可以杀死耐药性细菌