如何数据分析案例 一个真实案例给大家提供了一些数据分析的思路
数据分析是产品经理必备技能之一,本文以一个真实案例给大家提供了一些数据分析的思路,但还需大家自己多多思考,学以致用 。
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
文章插图
你可能做了一个策略,对大多数用户群有效,正数多负数少,大数上看来就是正数有效的:
但是这不是做增长产品的态度,市场增长就是要无所不用其极,从牙缝里扣东西 。
拆解清楚每一个策略对用户的正和负,保留下对新策略正向的用户群,其它用户群进行回滚保证不降低:
这样持续的做下去,你的产品虽然复杂性越来越高,但是真的能获得实打实的认知产品、分析结论和用户增长 。
这些数据维度和指标,不光代表了你的产品力,也代表了你提需求的水平,在规划需求的时候这些都要想到,后续研发在进行工作的时候才更好的预估难度和工期,否则等你的要么是没有结论的改版,要么是暗无天日的延期 。
请把需求提明白,前提是你能把你要什么想明白,别想当然,每一个动作牵扯的因素都非常多,想清楚在动手,另外,本次的流程我仅仅局限在做关键动作之前的拆解,而后续的影响分析更为重要,也就是上述的回流、阅读、在线时长等 。假设你上了个策略,通过欺骗的手段让用户的转化率提升了,但是总体的7日效率下跌了,这还了得,时间线短了说对其它业务、功能的影响一定要想清楚,严重了说你要是影响了充值功能,可怎么办?一定要想好后果 。
上述的表格仅作为示例,我就不做更详细的拆解和分析了,感兴趣的小伙伴可以接着做下去,是对初入产品的同学应该会有着帮助,一定从相同的结果动机下手,找到过程动机相同的对照组,去理解用户,这样的进行改版前的数据辅助分析,才能真的预估改版的合理性,需求的真伪性 。
在得出结论后,也要学会验证结论,可以利用交叉验证的方法,都是可以侧面去验证结论让分析做的更加可靠,严谨的 。
三、其它的一些话上述列举了近期的一个案例,不是我自身的,全凭个人兴趣深挖发挥,不过数据分析也不是万能的,有一些误区呈现给大家:
1. 选取的样本容量有误忽略了有效用户,囊括了无效用户,上述案例中,若把用户行为拆解开,能发现很多不一样的特征和细节,同时有时候样本容量的原因,样本过少会让结果变得不可测,样本过多也有可能只在乎少量用户的数据忽视了整体,有时候需要制定相同的抽样规则,减少分析结论的偏差性 。
2. 错判因果关系错判因果关系,商品评论多商品卖的就一定多吗?上述案例时,你能发现流失少就是刷新的功劳吗,并不一定,有时候分母不一样才是你获得错误结论的罪魁祸首,在分析数据的时候,正确判断数据指标的逻辑关系应该找几者之间的相关关系而不是因果关系 。
3. 被数据的表达技巧所蒙蔽在做数据分析时,我们需要警惕一些数据处理的小计俩,最小区间,上下极值,主次坐标轴等,不要被数据的视觉效果所蒙蔽 。
4. 过度依赖数据不要过分依赖数据,做一些没有价值的数据分析,很多牛逼的产品决策,并非通过数据发现的,而是一个产品经理综合智慧的体现 。
最后还没有重视起数据分析的企业应当着重注意了,传统老牌沃尔玛就是从数据分析中获取到了巨大的宝藏,从以下3个方向足以说明一切:
- 在价值认知上,传统企业需要认识到数据分析是能够带来的巨大价值,且这种价值是可留存的,得天独厚的竞争壁垒;
- 在方法论上,传统的企业不必在不同部门里面推行数据分析的各种方法体系,这些体系已经被欧美总结了至少30年,很多我们没有必要重新发明;
- 在技术工具上,国内已经如雨后春笋一般生出很多数据分析平台,工欲善其事,必先利其器,这是每个企业提高效率最好的手段和途径,让传统企业转型高科技企业的难度大大降低 。
工作中处处留心,可以避免走入很多的误区 。产品经理每一个决策几乎都要牵涉到很多方面 。磨刀不误砍柴工,多想想再去做,说不定效果更好 。
上述的案例是偶然听到的,不是自己经历,全凭自己兴趣进行深挖,可能会有分析不到位的地方,多多理解 。希望能给各位提供良好的数据分析的思路,足以,欢迎多多交流 。
【如何数据分析案例 一个真实案例给大家提供了一些数据分析的思路】以上就是如何数据分析案例(一个真实案例给大家提供了一些数据分析的思路)的相关内容了,更多精彩内容请关注科猫号SEO专员!
推荐阅读
- 多多牧场如何给好友的动物喂食
- 硝化菌,养鱼如何培养完善的硝化菌?
- 如何改掉坏习惯,如何改掉自言自语的坏习惯?
- 日元兑换人民币怎么算,在日本,如何兑换中国人民币?
- 如何做草鱼好吃,草鱼的作用
- 电脑版新浪微博中如何搜索电影
- 如何有效去除黑眼圈
- 如何搜索文件夹里文档的关键字眼
- 华为手机如何转换图片文字
- 微信如何快速找回以前的文件