圆怎么算面积,怎么计算圆柱的表面积


圆的平方面积怎么计算 圆的面积公式为:S=πr2,S=π(d/2)2,(d为直径,r为半径,π是圆周率,通常取3.14),圆面积公式的是由古代数学家不断推导出来的 。
我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积 。
古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积 。
古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积 。
16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形 。 圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr2 。
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2 。 (r为半径) 。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径) 。
3、圆的周长:C=2πr或c=πd 。 (d为直径,r为半径) 。
4、半圆的周长:d+(πd)/2或者d+πr 。 (d为直径,r为半径) 。
5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
6、扇形面积S=nπ R2/360=LR/2(L为扇形的弧长)
7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr2 。

圆面积计算公式大全 圆面积计算公式是:S=πr2或S=π*(d/2)2 。
把圆平均分成若干份,可以拼成一个近似的长方形 。 长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半 。 长方形的面积是ab,那圆的面积就是:圆的半径(r)乘以二分之一周长C,S=r*C/2=r*πr,有关的公式还有:
1、圆面积=圆周率×半径×半径
2、半圆的面积:S半圆=(πr2)÷2
3、半圆的面积=圆周率×半径×半径÷2
4、圆环面积: S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)
5、圆环面积=外大圆面积-内小圆面积
6、圆的周长=直径×圆周率
7、半圆周长=圆周率×半径+直径
扩展资料:
公式推导:圆周长公式
圆周长(C):圆的直径(d),那圆的周长(C)除以圆的直径(d)等于π,那利用乘法的意义,就等于 π乘以圆的直径(d)等于圆的周长(C),C=πd 。 而同圆的直径(d)是圆的半径(r)的两倍,所以就圆的周长(C)等于2乘以π乘以圆的半径(r),C=2πr 。

圆的面积怎么算?为什么? 圆的面积公式计算公式如下:
1、圆的面积计算公式:
把圆分成若干等份,可以拼成一个近似的长方形 。 长方形的宽相当于圆的半径 。
圆锥侧面积
扩展资料1、表示方式:
圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);圆心—O;弧—⌒;直径—d ;
扇形弧长—L ; 周长—C ; 面积—S 。
2、圆的标准方程:
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)2+(y-b)2=r2 。
特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2 。
3、圆的一般方程:
方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4.故有:
(1)当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(D2+E2-4F)/2为半径的圆;
(2)当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);

推荐阅读