平方根怎么算,平方根怎么列式( 四 )



参考资料:百科
平方根是怎么算的? 举个例子,1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3 。 于是问题的关键在于:如何求出它的个位数a?为此,我们从a所满足的关系式来入手 。
根据两数和的平方公式,可以得到
1156=(30+a)^2=30^2+2×30a+a^2,
所以 1156-30^2=2×30a+a^2,
即 256=(30×2+a)a,
也就是说, a是这样一个正整数,它与30×2的和,再乘以它本身,等于256 。
为便于求得a,可用下面的竖式来进行计算:
根号上面的数3是平方根的十位数 。 将 256试除以30×2,得4(如果未除尽则取整数位).由于4与30×2的和64,与4的积等于256,4就是所求的个位数a 。 竖式中的余数是0,表示开方正好开尽 。 于是得到 1156=34^2, 或√1156=34. 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
开方的计算步骤
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用“ ' ”这个符号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,所以试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商,如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小之后再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用相同的方法,继续求平方根的其余各位上的数 。
如碰到开不尽的情况,可根据所要求的精确度求出它的近似值 。 例如求其近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 。
笔算开平方运算较复杂,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值 。
参考资料:

如何计算一个数的平方根 开方的计算步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商(2×30除256,所得的最大整数是 4,即试商是4);
5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(2×30+4)×4=256,说明试商4就是平方根的第二位数);
6、用同样的方法,继续求平方根的其他各位上的数.
扩展资料:
牛顿迭代法:
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了 。 可以采取下面办法:
比如136161这个数字,首先找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表 。 先计算0.5(350+136161/350),结果为369.5 。
再计算0.5(369.5+136161/369.5)得到369.0003,发现369.5和369.0003相差无几,并且3692末尾数字为1 。 有理由断定3692=136161 。

推荐阅读