部编版八年级数学知识点

知识是一座宝库,而实践就是开启宝库的钥匙 。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果 。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助 。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程 。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程 。
(2)解这个整式方程 。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去 。
(4)写出原方程的根 。
“一化二解三检验四总结
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根 。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根 。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解 。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验 。
二、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合 。这条直线叫做对称轴 。互相重合的点叫做对应点 。
1、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合 。这条直线叫做对称轴 。互相重合的点叫做对应点 。
2、轴对称图形与轴对称的区别与联系:
(1)区别 。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系” 。
(2)联系 。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形 。
3、轴对称的性质:
(1)成轴对称的两个图形全等 。
(2)对称轴与连结“对应点的线段”垂直 。
(3)对应点到对称轴的距离相等 。
(4)对应点的连线互相平行 。
八年级上册数学知识点
一、在平面内,确定物体的位置一般需要两个数据 。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系 。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴 。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面 。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限 。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限 。
3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标 。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒 。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标 。
平面内点的与有序实数对是一一对应的 。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
【部编版八年级数学知识点】点P(x,y)在第一象限:x;0,y;0
点P(x,y)在第二象限:x;0,y;0
点P(x,y)在第三象限:x;0,y;0
点P(x,y)在第四象限:x;0,y;0
(2)、坐标轴上的点的特征
点P(x,y)在x轴上,y=0,x为任意实数
点P(x,y)在y轴上,x=0,y为任意实数
点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等
点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同 。
位于平行于y轴的直线上的各点的横坐标相同 。
(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
(6)、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于|y|;
(2)点P(x,y)到y轴的距离等于|x|;
初二数学学习方法
1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练 。特别是一次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯 。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果 。
2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查 。对能力较强的学生要引导他们多做课外习题,适当提高做题难度 。
3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路 。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程 。力争让学生把各种类型题做全并抓住其特点 。
4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会 。

    推荐阅读