判定平行四边形的条件 判定平行四边形的条件有哪些


判定平行四边形的条件 判定平行四边形的条件有哪些

文章插图
判定平行四边形的条件有:
1、两组对边分别平行的四边形是平行四边形(定义判定法) 。
2、一组对边平行且相等的四边形是平行四边形 。
3、两组对边分别相等的四边形是平行四边形 。
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定) 。
5、对角线互相平分的四边形是平行四边形 。
平行四边形,是在同一个二维平面内 , 由两组平行线段组成的闭合图形 。平行四边形一般用图形名称加四个顶点依次命名 。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点 。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形 。平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的 。

【判定平行四边形的条件 判定平行四边形的条件有哪些】