科学探索|科学家开发新技术 可以大规模生产生物降解微型机器人
科学家们已经开发出一种可生物降解微型机器人的大规模生产方法,这种机器人在输送细胞和药物后可以溶解在体内 。
为了创造一种每分钟可以生产100多个可在体内分解的微机器人技术,大邱庆北科技学院(DGIST)机器人和机电工程系的Hongsoo Choi教授团队与韩国天主教大学首尔圣玛丽医院的Sung-Won Kim教授团队以及苏黎世联邦理工学院的Bradley J. Nelson教授团队合作 。
文章图片
以微创靶向精准治疗为目标,构建微型机器人的方法有很多 。其中最受欢迎的是被称为双光子聚合法的超精细3D打印工艺,它通过两个激光器相交引发合成树脂的聚合 。这种技术有能力创建具有纳米级精度的结构 。缺点是创建一个微型机器人需要大量的时间,因为体素,即通过3D打印实现的像素,必须连续固化 。此外,在双光子聚合过程中,机器人中的磁性纳米粒子可能会阻碍光路 。当利用高浓度的磁性纳米粒子时,过程结果可能不均匀 。
为了解决目前微机器人生产技术的限制,DGIST教授Hongsoo Choi的研究团队创造了一种方法,通过将磁性纳米颗粒和可生物降解的甲基丙烯酸明胶的混合物流到微流控芯片上,以每分钟100个的高速度制造微机器人,该混合物可以通过光固化 。与现有的双光子聚合方法相比,这可以使制造微型机器人的速度提高1万倍以上 。
然后,用这种技术生产的微型机器人与从人的鼻子中收集的人类鼻甲骨干细胞进行培养,以诱导干细胞粘附到微型机器人的表面 。通过这一过程,制造了一个干细胞携带的微型机器人,包括内部的磁性纳米颗粒和附着在外表面的干细胞 。当机器人内部的磁性纳米粒子对外部磁场作出反应时,机器人就会移动,并能移动到所需的位置 。
文章图片
在现有的干细胞疗法中,选择性的细胞输送是困难的 。然而,携带干细胞的微型机器人可以通过实时控制电磁场控制系统产生的磁场而移动到所需的位置 。研究小组进行了一项实验,检查携带干细胞的微型机器人是否能通过一个迷宫状的微通道到达目标点,并因此证实机器人可以移动到所需的位置 。
【科学探索|科学家开发新技术 可以大规模生产生物降解微型机器人】此外,通过将携带微型机器人的干细胞与一种降解酶进行孵化,评估了微型机器人的可降解性 。孵化6小时后,微机器人完全解体,机器人内部的磁性纳米粒子被磁场控制系统产生的磁场收集 。干细胞在微型机器人被解体的地方增殖 。随后,干细胞被诱导分化成神经细胞,以确认正常分化;干细胞在大约21天后被分化成神经细胞 。该实验验证了使用微型机器人将干细胞运送到所需位置是可能的,而且运送的干细胞可以通过表现出增殖和分化来作为一种有针对性的精确治疗剂 。
- 科学探索|AI材料可自我学习并形成“肌肉记忆”
- 科学探索|西伯利亚偏远山洞的DNA揭示了第一个尼安德特人家庭
- 科学探索|突破100万安培 我国可控核聚变装置运行新记录诞生
- 科学探索|核聚变技术重大突破 我国新一代“人造太阳”首次放电
- 科学探索|阿迪朗达克的秋天 - 以卫星视角欣赏充满活力的色彩
- 科学探索|“秒”要被重新定义了 潘建伟团队这项“国际首次”研究功不可没
- 科学探索|国药集团中国生物成功分离猴痘病毒
- 科学探索|研究人员在实验室中培育出高效“僵尸真菌”
- 科学探索|星际荣耀双曲线一号民营火箭发射失利原因找到
- 科学探索|研究:尼安德特人的基因组序列显示出密切的家庭关系