如何判断函数单调性,带根号的函数怎么判断单调性( 二 )


2)、当X1>X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间 。
二、 常见方法: Ⅰ、定义法:
定义域判断函数单调性的步骤 ① 取值:
在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2; ② 作差(或商)变形:
作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形; ③ 定号:
确定差f(X1)-f(X2)的符号; ④ 判断:
根据定义得出结论 。
例:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明
解:任取x1、x2?(-∞,+∞),x1<x2,则
f﹙x1﹚-f﹙x2﹚=(x13+x1)- (x23+x2)=(x1-x2)+(x13-x23)
=(x1-x2)(x12+x22+x1x2+1)
=(x1-x2) [﹙x1+1/2x2﹚2+1+3/4x22]
∵x1、x2?(-∞,+∞),x1<x2, ∴x1-x2<0,(x1+1/2x2﹚2+1+3/4x22>0 故f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(-∞,+∞)上单调递增
Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): ① 函数y=-f(x)的单调性相反
② 函数y=f(x)恒为正或恒为负时,函数y=f(x)的单调性相反 ③ 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例:判断函数y=-x+1+1/x在(0,+∞)内的单调性 解:设y1=-x+1,y2=1/x,
∵y1在(0,+∞)上↓,y2在(0,+∞)上↓, ∴y=-x+1+1/x在(0,+∞)内↓
Ⅲ、图像法:
说明:⑴单调区间是定义域的子集 ⑵定义x1、x2的任意性
请采纳一下
如何判断函数的单调性? 先在区间上取两个值,一般都是X1、X2
设X1>X2(或者X1<X2)
然后把X1、X2代进去f(x)解析式做差
也就是f(X1)-f(X2)
关键一步就是化简
一般化成乘或除的形式
这样好判号
比如
你设的是X1>X2这个条件
最后化简下来满足
f(X1)-f(X2)>0的话,它在区间上就是增函数
一般判断的依据就是
自变量(也就是X1、X2)大的对应函数值{也就是f(X1)、f(X2)}大的就是增函数,自变量对应函数值小的就是减函数
函数的单调性和奇偶性分别怎么判断? 只含一类函数的用图象搞定;复合函数的话,一般是一个套一个的形式(考试最多两层),先判断里面的那个的单调性,再依照同增异减的方法变 。 比如判断lg(x^2)的单调性,里面x^2在负无穷到零上递减,零到正无

推荐阅读