不是所有的X7R电容都一样

几年以前,经过用瓷片电容的25年多工作之后,我对它们有了新的领悟 。那时我正在忙于做一个LED灯泡驱动器,当时我项目中一个RC电路的时间常数显然是有问题 。
我第一个假设是:电路板上某个元件值不正确,于是我测量用作一个分压器的两只电阻,但它们都没有问题 。我把电容从电路板上拆下来测量,也没有问题 。为了进一步确认,我测量并装上了新电阻和新电容,给电路上电,检查发现基本运行正常,然后看更换元件是否解决了RC电路时间常数问题 。但答案是否定的 。
我是在自然的环境下测试电路:在外壳内,电路处于外壳内,模拟了一个屋顶照明灯的“罐子”,有时元件温度会升到100多摄氏度 。虽然我重新测试RC电路的时间很短,一切仍非常烫手 。
显然,我的下一个结论是:问题在于电容的温度变化 。但是我自己都怀疑这个结论,因为我用的可是X7R电容,根据我的记忆,这种电容最高可工作到+125°C,变化也只有±15%.我信任我的记忆力,但是为了保险起见,我重新查看了所使用电容的数据表 。
背景报告
表1给出了用于不同种类瓷片电容的字母与数字,以及它们各自的含义 。表格描述了Class II和Class III两种瓷片电容 。这里不谈太多细节,Class I级电容包括常见的COG(NPO)型;
这种电容的体积效率不及表格中的两种电容,但是它在多变环境条件下要稳定得多,而且不会出现压电效应 。相反,表格中的电容具有广泛多变的特性,它们能够扩展并承受所施加的电压,但有时会产生可听到的压电效应(蜂鸣声或振铃声) 。

不是所有的X7R电容都一样
文章插图
在给出的多种电容类型中,据我的经验,最常用的是X5R、X7R,还有Y5V 。我从来没用过Y5V,因为它们在整个环境条件区间内,会表现出极大的电容量变化 。
当电容公司开发产品时,他们会通过选择材料的特性,使电容能够在规定的温度区间(第一个和第二个字母),工作在确定的变化范围内(第三个字母;表1) 。我正在使用的是X7R电容,它在-55°C到+125°C之间的变化不超过±15% 。所以,要么我是用了一批劣质电容,要么我的电路其它部分有问题 。
不是所有的X7R电容都一样
既然我的RC电路时间常数问题无法用特定温度变量来解释,就必须深入研究 。看着我那支电容的容量与施加电压的数据,我惊奇的发现,电容随着设置条件的变化量是如此之大 。我选择的是一只工作在12V偏压下的16V电容 。数据表显示,我的4.7-μF电容在这些条件下通常是提供1.5μF的容量 。现在,就完全能解释RC电路的问题了 。
数据表显示,如果我把电容封装尺寸从0805增加到1206,在规定条件下的典型电容量将是3.4μF 。这表明有进一步研究的必要 。
我发现村田制作所和TDK公司在网站上提供了很好的工具,能够绘出不同的环境条件下的电容量变化 。我对不同尺寸和额定电压的4.7μF电容做了一番研究 。图1数据是取自村田的工具,针对几种不同的4.7μF瓷片电容 。我同时观察了X5R和X7R两种型号,封装尺寸从0603到1812,额定电压从6.3到25V dc.首先我注意到,随着封装尺寸的增加,随所施加直流电压的电容量变化下降,并且幅度很大 。

不是所有的X7R电容都一样
文章插图
图一 本图描绘了所选4.7μF电容上直流电压与温度变化量的关系,如图所示,随着封装尺寸的增加,电容量随施加电压的而大幅度下降 。
CAPACITANCE(μF) 电容量 (μF) DC VOLTAGE (V)直流电压 (V)
第二个有趣的点是,对于某个给定的封装尺寸和瓷片电容类型,电容的额定电压似乎一般没有影响 。
于是我估计,如将一只额定25V的电容用于12V电压,则其电容变化量要小于同样条件下的额定16V电容 。看看1206封装X5R的曲线,显然额定6.3V元件的性能确实优于有较高额定电压的同类品种 。
如果我们检验更大范围的电容,就会发现这种情况很常见 。对于我研究的那些电容样本集,并没有展示出普通瓷片电容应有的表现 。
观察到的第三个问题是:对于同样的封装,X7R电容的温度敏感度要高于X5R电容 。我不知道这是否普遍适用,但是在我的实验里似乎是这样 。
从图中可以看出,表2显示了X7R电容在12V偏压电容量的减少量 。注意,随着电容封装尺寸逐步增加到1210,电容量有着稳步的增长,但是超过这个尺寸就没有多大改变了 。
【不是所有的X7R电容都一样】
不是所有的X7R电容都一样
文章插图

不是所有的X7R电容都一样
文章插图
选择正确的电容
在我的例子中,我为4.7μF的X7R电容选择了最小的可用封装,因为尺寸是我项目的一个考虑因素 。由于本人的无知,因而假设了任何一种X7R都与其它X7R有相同的效果;而显然,情况并非如此 。为使我的应用得到正确的性能,我必须采用某种更大的封装 。
我真的不想用1210封装 。幸运的是,我可以把所用电阻值增大5x,因而电容量减少到了1μF.
图2是几种16V、1μF X7R电容与16V、4.7μF X7R电容的电压特性图 。0603的1μF电容和0805的4.7μF电容表现相同 。0805和1206的1μF电容性能都略好于1210的4.7μF电容 。因此,使用0805的1μF电容,我就可以保持电容体积不变,而偏压下电容只降到额定量的大约85%,而不会到30% 。
但我还是困惑 。我曾认为所有X7R电容都应该有着相同的电压系数,因为所用的电介质是相同的,都是X7R.所以我向一位同事,日本TDK公司的现场应用工程师克里斯伯克特请教,他也是瓷片电容方面的专家 。
他解释说很多材料都能满足“X7R”资格 。事实上,任何一种材料,只要能使器件满足或超过X7R温度特性(即在-55°C到+125°C范围内,变化在±15%),都可以叫做X7R 。伯克特也解释说,并没有专门针对X7R电容或任何其他类型瓷片电容的电压系数规范 。
这是一个关键的要点,因此我要再重复一遍 。只要一个电容满足了温度系数规范,不管其电压系数多么糟糕,厂商都可以把这个电容叫做X7R电容(或者X5R,或其他任何类型) 。这个事实印证了任何一位有经验电器工程师都知道的那句准则(双关语):去读数据表!
由于厂商越来越倾向于小型元件,所以他们不得不对使用的材料作出妥协 。为了用更小的尺寸获得所需要的体积效率,他们被迫接受了更糟糕的电压系数 。当然,有信誉的制造商会尽量减少这种折中的副作用 。
结论是,在使用小封装瓷片电容的时候(实际在使用任何元件的时候),阅读数据表都极为重要 。但很遗憾,通常我们见到的数据表都很简短,几乎无法为你做决定提供任何需要的信息,所以你必须坚持让制造商给出更多的信息 。
那么被我否定的Y5V电容怎么样呢?纯为好玩,我们来研究一个普通的Y5V电容 。我选择的是一个4.7μF、0603封装的额定6.3V电容)我不会提制造厂商,因为它的Y5V电容并不劣于任何其他厂商的Y5V电容),并查看它在5V电压和+ 85° C下的规格 。在5V电压下,典型的电容量比额定值低92.9%,或为0.33 μF.
这就对了 。如果给这个6.3V的电容加5V偏压,则其电容量要比额定值小14倍 。
在0V偏压+85°C时,电容量会减少68.14%,从4.7μF降至1.5μF.现在,你可能觉得,在5V偏压下,电容量会从0.33降至0.11μF.幸运的是,两个效应并没有以这种方式结合到一起 。在这个特例中,室温条件下加5V偏压的电容变化要差于+85°C.
明确地说,这个电容在0V偏压下,电容量会从室温的4.7μF降到+85°C的1.5μF;而在5V偏压下,电容量会从室温的0.33μF增加到+85°C的0.39μF.这个结果应该让你信服了,真的有必要仔细查看元件规格 。
着手处理细节
这次教训之后,我再也不会向同事或消费者推荐某个X7R或X5R电容了 。我会向他们推荐某家供应商的某种元件,而我已经检查过该元件的数据 。我也提醒消费者,在考虑制造的替代供应商时,一定要检查数据,不要遭遇我的这种问题 。
你可能已经察觉到了更大的教训,那就每次都要阅读数据表,无一例外 。如果数据表上没有足够的信息,要向厂商要具体的数据 。也要记住,瓷片电容的命名X7R、Y5V等跟电压系数毫无关系 。工程师们必须检查了数据才能知道(真正地知道)某种电容在该电压下的性能如何 。
最后请记住:当我们持续疯狂的追求更小尺寸时,它也成为了每天都会遇到的问题 。
责任编辑:lq

    推荐阅读