单片机RS485通信接口、控制线、原理图及程序实例

RS232 标准是诞生于 RS485 之前的 , 但是 RS232 有几处不足的地方:
接口的信号电平值较高 , 达到十几 V , 使用不当容易损坏接口芯片 , 电平标准也与TTL 电平不兼容 。
传输速率有局限 , 不可以过高 , 一般到一两百千比特每秒(Kb/s)就到极限了 。
接口使用信号线和 GND 与其它设备形成共地模式的通信 , 这种共地模式传输容易产生干扰 , 并且抗干扰性能也比较弱 。
传输距离有限 , 最多只能通信几十米 。
通信的时候只能两点之间进行通信 , 不能够实现多机联网通信 。
针对 RS232 接口的不足 , 就不断出现了一些新的接口标准 , RS485 就是其中之一 , 它具备以下的特点:
采用差分信号 。我们在讲 A/D的时候 , 讲过差分信号输入的概念 , 同时也介绍了差分输入的好处 , 最大的优势是可以抑制共模干扰 。尤其当工业现场环境比较复杂 , 干扰比较多时 , 采用差分方式可以有效的提高通信可靠性 。RS485采用两根通信线 , 通常用 A 和 B 或者 D+和 D-来表示 。逻辑“1”以两线之间的电压差为+(0.2~6)V表示 , 逻辑“0”以两线间的电压差为-(0.2~6)V 来表示 , 是一种典型的差分通信 。
RS485 通信速率快 , 最大传输速度可以达到 10Mb/s 以上 。
RS485 内部的物理结构 , 采用的是平衡驱动器和差分接收器的组合 , 抗干扰能力也大大增加 。
传输距离最远可以达到 1200 米左右 , 但是它的传输速率和传输距离是成反比的 , 只有在 100Kb/s以下的传输速度 , 才能达到最大的通信距离 , 如果需要传输更远距离可以使用中继 。
可以在总线上进行联网实现多机通信 , 总线上允许挂多个收发器 , 从现有的 RS485芯片来看 , 有可以挂 32、64、128、256等不同个设备的驱动器 。
RS485 的接口非常简单 , 与 RS232 所使用的 MAX232 是类似的 , 只需要一个 RS485转换器 , 就可以直接与单片机的 UART串口连接起来 , 并且使用完全相同的异步串行通信协议 。但是由于 RS485是差分通信 , 因此接收数据和发送数据是不能同时进行的 , 也就是说它是一种半双工通信 。那我们如何判断什么时候发送 , 什么时候接收呢?
RS485 转换芯片很多 , 这节课我们以典型的 MAX485 为例讲解 RS485 通信 , 如图 18-1所示 。
 
图 18-1 MAX485 硬件接口
MAX485 是美信(Maxim)推出的一款常用 RS485 转换器 。其中 5 脚和 8 脚是电源引脚;6脚和 7 脚就是 RS485 通信中的 A 和B 两个引脚;1 脚和 4 脚分别接到单片机的 RXD 和 TXD引脚上 , 直接使用单片机 UART 进行数据接收和发送;2 脚和 3 脚是方向引脚 , 其中 2脚是低电平使能接收器 , 3 脚是高电平使能输出驱动器 , 我们把这两个引脚连到一起 , 平时不发送数据的时候 , 保持这两个引脚是低电平 , 让 MAX485处于接收状态 , 当需要发送数据的时候 , 把这个引脚拉高 , 发送数据 , 发送完毕后再拉低这个引脚就可以了 。为了提高 RS485 的抗干扰能力 , 需要在靠近 MAX485 的A 和 B 引脚之间并接一个电阻 , 这个电阻阻值从 100欧到 1K 都是可以 。
在这里我们还要介绍一下如何使用 KST-51单片机开发板进行外围扩展实验 。我们的开发板只能把基本的功能给同学们做出来提供实验练习 , 但是同学们学习的脚步不应该停留在这个实验板上 。如果想进行更多的实验 , 就可以通过单片机开发板的扩展接口进行扩展实验 。大家可以看到蓝绿色的单片机座周围有32 个插针 , 这 32 个插针就是把单片机的 32 个 IO 引脚全部都引出来了 。在原理图上体现出来的就是 J4、J5、J6、J7 这 4 个器件 , 如图18-2 所示 。
 
图 18-2 单片机扩展接口
这 32 个 IO 口中并不是所有的都可以用来对外扩展 , 其中既作为数据输出 , 又可以作为数据输入的引脚是不可以用的 , 比如 P3.2、P3.4、P3.6引脚 , 这三个引脚是不可用的 。比如P3.2 这个引脚 , 如果我们用来扩展 , 发送的信号如果和 DS18B20 的时序吻合 , 会导致DS18B20拉低引脚 , 影响通信 。除这 3 个 IO 口以外的其它 29 个 , 都可以使用杜邦线接上插针 , 扩展出来使用 。当然了 , 如果把当前的 IO口应用于扩展功能了 , 板子上的相应功能就实现不了了 , 也就是说需要扩展功能和板载功能之间二选一 。
在进行 RS485 实验中 , 我们通信用的引脚必须是 P3.0 和 P3.1 , 此外还有一个方向控制引脚 , 我们使用杜邦线将其连接到 P1.7 上去 。RS485的另外一端 , 大家可以使用一个 USB转 RS485 模块 , 用双绞线把开发板和模块上的 A 和 B 分别对应连起来 , USB那头插入电脑 , 然后就可以进行通信了 。
学习了第 13章实用的串口通信方法和程序后 , 做这种串口通信的方法就很简单了 , 基本是一致的 。我们使用实用串口通信例程的思路 , 做了一个简单的程序 , 通过串口调试助手下发任意个字符 , 单片机接收到后在末尾添加“回车+换行”符后再送回 , 在调试助手上重新显示出来 , 先把程序贴出来 。
程序中需要注意的一点是:因为平常都是将 MAX485 设置为接收状态 , 只有在发送数据的时候才将 MAX485 改为发送状态 , 所以在UartWrite()函数开头将 MAX485方向引脚拉高 , 函数退出前再拉低 。但是这里有一个细节 , 就是单片机的发送和接收中断产生的时刻都是在停止位的一半上 , 也就是说每当停止位传送了一半的时候 , RI 或 TI就已经置位并且马上进入中断(如果中断使能的话)函数了 , 接收的时候自然不会存在问题 , 但发送的时候就不一样了:当紧接着向 SBUF 写入一个字节数据时 , UART硬件会在完成上一个停止位的发送后 , 再开始新字节的发送 , 但如果此时不是继续发送下一个字节 , 而是已经发送完毕了 , 要停止发送并将 MAX485 方向引脚拉低以使MAX485 重新处于接收状态时就有问题了 , 因为这时候最后的这个停止位实际只发送了一半 , 还没有完全完成 , 所以就有了UartWrite()函数内DelayX10us(5)这个操作 , 这是人为的增加了 50us 的延时 , 这 50us的时间正好让剩下的一半停止位完成 , 那么这个时间自然就是由通信波特率决定的了 , 为波特率周期的一半 。
/****************************RS485.c文件程序源代码*****************************/
纯文本复制
#include
#include
sbit RS485_DIR = P1^7; //RS485 方向选择引脚
bit flagFrame = 0; //帧接收完成标志 , 即接收到一帧新数据
bit flagTxd = 0; //单字节发送完成标志 , 用来替代 TXD 中断标志位
unsigned char cntRxd = 0; //接收字节计数器
unsigned char pdata bufRxd[64]; //接收字节缓冲区
extern void UartAction(unsigned char *buf, unsigned char len);
/* 串口配置函数 , baud-通信波特率 */
void ConfigUART(unsigned int baud){
RS485_DIR = 0; //RS485 设置为接收方向
SCON = 0x50; //配置串口为模式 1
TMOD &= 0x0F; //清零 T1 的控制位
TMOD |= 0x20; //配置 T1 为模式 2
TH1 = 256 - (11059200/12/32)/baud; //计算 T1 重载值
TL1 = TH1; //初值等于重载值
ET1 = 0; //禁止 T1 中断
ES = 1; //使能串口中断
TR1 = 1; //启动 T1
}
/* 软件延时函数 , 延时时间(t*10)us */
void DelayX10us(unsigned char t){
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--t);
}
/* 串口数据写入 , 即串口发送函数 , buf-待发送数据的指针 , len-指定的发送长度 */
void UartWrite(unsigned char *buf, unsigned char len){
RS485_DIR = 1; //RS485 设置为发送
while (len--){ //循环发送所有字节
flagTxd = 0; //清零发送标志
SBUF = *buf++; //发送一个字节数据
while (!flagTxd); //等待该字节发送完成
}
DelayX10us(5); //等待最后的停止位完成 , 延时时间由波特率决定
RS485_DIR = 0; //RS485 设置为接收
}
/* 串口数据读取函数 , buf-接收指针 , len-指定的读取长度 , 返回值-实际读到的长度 */
unsigned char UartRead(unsigned char *buf, unsigned char len){
unsigned char i;
//指定读取长度大于实际接收到的数据长度时 , 
//读取长度设置为实际接收到的数据长度
if (len > cntRxd){
len = cntRxd;
}
for (i=0; i
*buf++ = bufRxd[i];
}
cntRxd = 0; //接收计数器清零
return len; //返回实际读取长度
}
/* 串口接收监控 , 由空闲时间判定帧结束 , 需在定时中断中调用 , ms-定时间隔 */
void UartRxMonitor(unsigned char ms){
static unsigned char cntbkp = 0;
static unsigned char idletmr = 0;
if (cntRxd > 0){ //接收计数器大于零时 , 监控总线空闲时间
if (cntbkp != cntRxd){ //接收计数器改变 , 即刚接收到数据时 , 清零空闲计时
cntbkp = cntRxd;
idletmr = 0;
}else{ //接收计数器未改变 , 即总线空闲时 , 累积空闲时间
if (idletmr < 30){ //空闲计时小于 30ms 时 , 持续累加
idletmr += ms;
if (idletmr >= 30){ //空闲时间达到 30ms 时 , 即判定为一帧接收完毕
flagFrame = 1; //设置帧接收完成标志
}
}
}
}else{
cntbkp = 0;
}
}
/* 串口驱动函数 , 监测数据帧的接收 , 调度功能函数 , 需在主循环中调用 */
void UartDriver(){
unsigned char len;
unsigned char pdata buf[40];
if (flagFrame){ //有命令到达时 , 读取处理该命令
flagFrame = 0;
len = UartRead(buf, sizeof(buf)-2); //将接收到的命令读取到缓冲区中
UartAction(buf, len); //传递数据帧 , 调用动作执行函数
}
}
/* 串口中断服务函数 */
void InterruptUART() interrupt 4{
if (RI){ //接收到新字节
RI = 0; //清零接收中断标志位
//接收缓冲区尚未用完时 , 保存接收字节 , 并递增计数器
if (cntRxd < sizeof(bufRxd)){
bufRxd[cntRxd++] = SBUF;
}
}
if (TI){ //字节发送完毕
TI = 0; //清零发送中断标志位
flagTxd = 1; //设置字节发送完成标志
}
}
/*****************************main.c文件程序源代码******************************/
#include
unsigned char T0RH = 0; //T0 重载值的高字节
unsigned char T0RL = 0; //T0 重载值的低字节
void ConfigTimer0(unsigned int ms);
extern void UartDriver();
extern void ConfigUART(unsigned int baud);
extern void UartRxMonitor(unsigned char ms);
extern void UartWrite(unsigned char *buf, unsigned char len);
void main(){
EA = 1; //开总中断
ConfigTimer0(1); //配置 T0 定时 1ms
ConfigUART(9600); //配置波特率为 9600
while (1){
UartDriver(); //调用串口驱动
}
}
/* 串口动作函数 , 根据接收到的命令帧执行响应的动作
buf-接收到的命令帧指针 , len-命令帧长度 */
void UartAction(unsigned char *buf, unsigned char len){
//在接收到的数据帧后添加换车换行符后发回
buf[len++] = '\r';
buf[len++] = '\n';
UartWrite(buf, len);
}
/* 配置并启动 T0 , ms-T0 定时时间 */
void ConfigTimer0(unsigned int ms){
unsigned long tmp; //临时变量
tmp = 11059200 / 12; //定时器计数频率
tmp = (tmp * ms) / 1000; //计算所需的计数值
tmp = 65536 - tmp; //计算定时器重载值
tmp = tmp + 33; //补偿中断响应延时造成的误差
T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节
T0RL = (unsigned char)tmp;
TMOD &= 0xF0; //清零 T0 的控制位
TMOD |= 0x01; //配置 T0 为模式 1
TH0 = T0RH; //加载 T0 重载值
TL0 = T0RL;
ET0 = 1; //使能 T0 中断
TR0 = 1; //启动 T0
}
/* T0 中断服务函数 , 执行串口接收监控 */
void InterruptTimer0() interrupt 1{
TH0 = T0RH; //重新加载重载值
TL0 = T0RL;
UartRxMonitor(1); //串口接收监控
}
现在看这种串口程序 , 是不是感觉很简单了呢?串口通信程序我们反反复复的使用 , 加上随着学习的模块越来越多 , 实践的越来越多 , 原先感觉很复杂的东西 , 现在就会感到简单了 。从设备管理器里可以查看所有的COM 口号 , 我们下载程序用的是 COM4 , 而 USB 转RS485 虚拟的是 COM5 , 通信的时候我们用的是 COM5 口 , 如图 18-3 所示 。
 
【单片机RS485通信接口、控制线、原理图及程序实例】图 18-3 RS485 通信试验设置和结果

    推荐阅读